ANTIDEPRESSANT-LIKE ACTIVITY OF AMOP-H-OH ('SAZETIDINE-A') IN THE FORCED SWIM TEST IS MEDIATED BY HIGH AFFINITY NICOTINIC ACETYLCHOLINE RECEPTORS.

B.J. Caldarone¹, M. Manzano¹, A. C. Fedolak¹, N.E. Paterson¹, A.P. Kozikowski², M.R. Picciotto³, B.E. Olivier^{1,4}, and A. Ghavami¹

¹Psycho*Genics* Inc., Tarrytown, NY, ²University of Illinois at Chicago, Chicago, IL, ³Yale University School of Medicine, New Haven, CT, ⁴Utrecht University, Utrecht, Netherlands

Introduction

- ✤ Both preclinical and clinical data suggest a role for nicotinic acetylcholine receptors (nAChRs) in depression.
- Both nAChR agonists and antagonists reduce depressive symptoms in humans and have antidepressant-like effects in rodent models.
- This study evaluated the action of the selective α4β2 partial agonist AMOP-H-OH (6-[5-(Azetidin-2ylmethoxy) pyridin-3-yl]hex-5-yn-1-ol (aka Sazetidine-A)) in the forced swim test in mice.

Methods

Animals

- Alle BALB/cJ or C57BL/6J mice from Jackson Laboratory (Bar Harbor, ME) were housed in groups of four and maintained on a 12hr/12hr light/dark cycle. Room temperature was maintained at 20-23°C with relative humidity at approximately 30%. Chow and water were provided *ad libitum* for the duration of the study. All procedures were approved by PsychoGenics' Institutional Animal Care and Use Committee.
- ➡ BALB/cJ mice were used for all studies with the exception of the mecamylamine dose response study that used the C57BL/6J strain.

Forced Swim Test

Mice were individually placed into clear glass cylinders (15 cm tall x 10 cm wide, 1 L beakers) containing 23±1°C water 12 cm deep (approximately 800 mL). The time the animal spent immobile was recorded over a 6 min trial. Immobility was defined as the absence of all movement except those required by the mouse to keep its head above the water.

Measurement of AMOP-H-OH levels in plasma and brain

Mice were treated with 1 or 3mg/kg of AMOP-H-OH and plasma and brains were collected 0.25, 0.5, 1, 2, and 4 hours after injection. Levels of AMOP-H-OH were measured by HPLC (Enthalpy Analytical, Raleigh-Durham, North Carolina).

Drugs

→ All drugs were administered i.p. at a concentration of 10ml/kg in a saline or vehicle. AMOP-H-OH was synthesized in-house and all other compounds were purchased from Sigma.

Statistical Analysis

Data were analyzed using analysis of variance (ANOVA) followed by Fisher's PLSD post hoc test when appropriate. An effect was considered significant if p<0.05.</p>

Summary

- AMOP-H-OH produced a robust reduction in immobility in the forced swim test in comparison to weaker effects seen with the non-competitive nAChR antagonist mecamylamine and the α4β2 partial agonist varencicline.
- The antidepressant-like effect of AMOP-H-OH in forced swim was completely reversed by mecamylamine and the high affinity nAChR antagonist dihydro-β-erythroidine (DHβE), but not by the q7 nAChR antagonist methyllvcaconitine (MLA).
- The antidepressant-like effect of AMOP-H-OH in forced swim was completely absent in knockout mice lacking the β2 subunit of the nAChR.
- AMOP-H-OH was long lasting in the forced swim test with efficacy observed up to 4 hours after treatment, an effect that was also completely reversed by mecamylamine.
- Brain levels of AMOP-H-OH reached only low levels 15 min after administration and were at or below detection level at the later time points. Therefore, the long lasting effects of AMOP-H-OH in forced swim may be mediated by a metabolite rather than directly by AMOP-H-OH.
- Additional experiments are underway to understand the dissociation between plasma/brain levels of AMOP-H-OH and duration of action.

Conclusions

- \Rightarrow The behavioral actions of AMOP-H-OH in the forced swim test are mediated by α 4 β 2 receptors.
- Our results support the development of α4β2 ligands for the treatment of depression. The superior
 efficacy of AMOP-H-OH in forced swim compared to clinical candidate compounds suggests that
 the AMOP-H-OH class of compounds may also provide novel opportunities for the development of
 drugs to treat depression.

AMOP-H-OH (0.3, 1, 3, or 10mg/kg), varenicline (0.3, 1, or 3mg/kg), mecamylamine (1, 3, or 10mg/kg), sertraline (SERT, 20mg/kg) or vehicle (VEH) was administered to mice 30 min before forced swim testing. AMOP-H-OH produced a potent antidepressant-like effect in mice, whereas varenicline did not significantly reduce immobility. Mecamylamine showed a small but significant antidepressant-like effect and sertraline produced the expected reduction in immobility.

Data are mean ±SEM (AMOP-H-OH, n=9-10/group; mecamylamine (n=9-18/group). *p<0.05 vs. vehicle

Figure 2: The antidepressant-like effects of AMOP-H-OH in the forced swim test are mediated by high affinity nAChRs.

Mice received a 5 min pretreatment with the nAChB antagonists mecanylamine (Img/kg), dihydro-betaerythroidin (DHBE, ang/kg), or methylivcaconilina (MLA, Img/kg) followied by AMOP-H-OH (i or 3mg/kg, i,p). Mice were tested in forced swim 30 min after AMOP-H-OH administration. Both the broad nAChR antagonist mecanylamine and the high affinity antagonist DHBE completely reversed the antidepressant-like effects of AMOP-H-OH in the forced swim test. The g7 antagonist MLA did not reverse the antidepressant-like effects of AMOP-H-OH in the forced swim test.

Data are mean ±SEM (n=9-10/group) *p<0.05 vs. vehicle

Figure 3: AMOP-H-OH is inactive in forced swim in knockout mice lacking the β2 subunit of the nAChR.

Wildtype, β2 subunit knockout, or β2 subunit heterozygous mice were administered either AMOP-H-OH (fmg/kg) or vehicle 30 min before forced swim testing. Whereas wildtype mice showed the expected decrease in immobility following AMOP-H-OH treatment, β2 subunit knockout mice showed or antidepressant-like response to AMOP-H-OH. β2 subunit heterozygous mice showed a behavioral response to AMOP-H-OH similar to that seen in wildtowe mice.

Data are mean ±SEM (n=5-8/group). *p<0.05 vs. vehicle of same genotype

AMOP-H-OH (1mg/kg) was administered to mice 2, 3 or 4 hours before forced swim testing. The effect of AMOP-H-OH was long lasting with significant reductions in immobility observed up to 4 hrs after treatment.

Data are mean ±SEM (n=10-12/group) *p<0.05 vs. vehicle

Figure 5: Plasma and brain levels of AMOP-H-OH show disassociation with duration of action in the forced swim test.

AMOP-H-OH (1 or 3mg/kg) was administered to mice and brain and plasma levels were measured 0.25, 0.5, 3, and 4 hrs after administration. Although AMOP-H-OH was active in the forced swim test up to 4hr after administration, drug levels were undetectable in both plasma and brain at 4hrs. These results suggest that AMOP-H-OH may produce a behaviorally active metabolite or act via desensitization of receptors.

Data are mean ±SEM, n=3/group

Figure 6: The long lasting effects of AMOP-H-OH in the forced swim test are mediated by nAChRs.

Mice were administered vehicle (Veh) or AMOP-H-OH (AMOP) (3mg/kg) and 3.5 later were administered Veh, mecamylamic (Mec) (1mg/kg) or AMOP-H-OH (3mg/kg). Mice were tested in forced swim 4 hrs after the first drug administration. Mecamylamine blocked the reduction of immobility by AMOP-H-OH though brain levels of AMOP-H-OH were no longer detectbible.

Data are mean ±SEM (n=10/group)

*p<0.05 AMOP-Veh vs. AMOP-Med

Mice were administered vehicle (Veh) or mecamylamic (Mec) (mayig) and 5.5 hi later were administered Veh, or AMOP-H-OH (AMOP) [3mg/kg). Mice were tostel in forced swim A hrs after the first drug administration. Mecamylamice blocked the effects of AMOP, demonstrating that AMOP-H-OH's long lasting antidepressant-like actions are mediate by AChRe.

Mec

AMOP

AMOR

Veh

Data are mean ±SEM (n=10/group). *p<0.05 Veh-AMOP vs. Mec-AMOP

4 hr pretreate

3.5hr pretreatment Veh