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Abstract

Drug testing with traditional behavioral assays constitutes a major bottleneck in the development 

of novel therapies. PsychoGenics developed three comprehensive highthroughtput systems, 

SmartCube®, NeuroCube® and PhenoCube® systems, to increase the efficiency of the drug 

screening and phenotyping in rodents. These three systems capture different domains of behavior, 

namely, cognitive, motor, circadian, social, anxiety-like, gait and others, using custom-built 

computer vision software and machine learning algorithms for analysis. This review exemplifies 

the use of the three systems and explains how they can advance drug screening with their 

applications to phenotyping of disease models, drug screening, selection of lead candidates, 

behavior-driven lead optimization, and drug repurposing.

1. Introduction

Neuropsychiatric, developmental and neurodegenerative disorders are complex and involve 

multiple neuronal circuits. Target-based approaches have, for the most part, failed to deliver 

meaningful treatments, whereas phenotypic screening has proved more successful. In the 

period between 1999 and 2008, 75 first-in-class drugs with novel mechanism of action were 

approved. Of the first-in-class drugs, 28 were discovered using phenotypic screening vs. 17 

using target-based approaches. Specifically in CNS, 7 of the 8 first-in-class drugs approved 

were discovered using phenotypic screening (Swinney and Anthony, 2011).

It is not surprising, therefore that many of the most efficacious drugs, especially in 

psychiatry, have multiple targets and were discovered by serendipity (observing how an 

animal's behavior was altered in response to the drug). Since the goal of any 

neuropsychiatric drug is to impact behavior, PsychoGenics has industrialized “serendipity” 

with its behavior-based technologies.

PsychoGenics' proprietary behavior-based technologies, also known as the SmartCube®, 

NeuroCube® and PhenoCube® systems, combine behavioral neurobiology insight integrated 

with advances in robotics and computer vision (video capture and analysis) and the power of 
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bioinformatics to process and analyze massive temporal and vectorial datasets using 

probabilistic causal inference algorithms (Fig. 1). The technologies offer numerous distinct 

advantages over current behavioral assessment including the following:

High throughput - can screen tens of thousands of compounds for CNS activity and 

identify those with a behavioral profile that reverses a disease model phenotype or is 

reminiscent of drugs that treat a specific neuropsychiatric disorder;

High content – thousands of features are collected and proprietary bioinformatics 

algorithms are employed to detect subtle phenotypic differences associated with a 

disease model or drug effect.

Unbiased – Computer vision algorithms and bioinformatics eliminate human 

intervention and subjectivity.

PsychoGenics uses its platforms at all stages of drug discovery as described below, to 

identify novel treatments addressing major unmet neuropsychiatric disorders that are 

unlikely to be found by other means. Platform applications include:

• Screening representative compounds from diverse CNS libraries. This approach is 

agnostic to compound mechanism of action;

• Re-purposing compounds that are discontinued (for reasons other than safety) or 

currently being developed for other non-CNS indications;

• Screening target-focused compounds to determine the therapeutic utility of a target 

or identifying a preferred chemotype;

• Assessing compound combinations (i.e. determining the efficacy of a combination 

of novel compounds or a novel compound combined with an existing marketed 

drug);

• Lead optimization.

Using this approach, PsychoGenics has identified several drug candidates at various stages 

of clinical and preclinical development on its own and in partnership with other companies.

2. The SmartCube® System

The SmartCube® system is a high-throughput automated behavioral platform that presents a 

sequence of challenges to a mouse through its customized hardware, extracts more than 

2000 features per session, and, using proprietary bioinformatics, and detects the potential 

therapeutic efficacy of compounds.

SmartCube® employs computer vision and mechanical actuators to detect spontaneous and 

evoked behavior eliciting responses through anxiogenic and startling stimuli. Behavioral 

readouts include locomotion, trajectory complexity, body posture and shape, simple 

behaviors and behavioral sequences (Brunner et al., 2002; Houghten et al., 2008; Roberds et 

al., 2011). Supervised machine learning algorithms are used to analyze the collected 

features. Although approximately ½ million datapoints are collected per mouse per session, 
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behavioral definitions, machine learning techniques and smart voting under uncertainty, are 

used to reduce this dataset to ∼ 2000 target features.

PsychoGenics' proprietary supervised machine learning methodology, derived from 

minimization of Bayesian misclassification probability, similar in spirit to Support Vector 

Machines, is used to train a classification algorithm that reliably maps behavioral features 

for each drug to its corresponding biological response “label” (e.g. CNS Indication or 

Mechanism of Action). The original feature space undergoes non-linear transformation 

using a proprietary semi-blind source separation variant of Independent Component 

Analysis to minimize “overcounting”, during calculation of the contribution of 

overrepresented original features, and reduce the effective (new) feature dimensionality. The 

output of the resulting classification algorithm is a probability distribution over the chosen 

set of labels which, in addition to a specific biological response, predicts quantities such as 

“unknown activity” (difference from vehicle not attributable to any specific feature patterns 

in the training set) as well as “total activity” of the drug (Fig. 2).

Two major types of analyses are routinely conducted: Class and Subclass. For Class and 

Subclass analyses, a reference data set has been built from hundreds of drug doses grouped 

in multiple drug classes plus a vehicle class. Dose responses for the reference drugs were 

constructed using multiple doses targeting both efficacious doses as well as doses that 

exhibit side effect profiles in mice. The Class analysis uses labels and corresponding drugs 

that are currently in the market or have been clinically validated for a specific therapeutic 

indication. The Subclass analysis uses labels and a larger set of compounds selected from 

both marketed drugs and compounds validated for specific therapeutic uses. The reference 

databases are continually expanding with the addition of novel therapeutics and new 

proprietary databases are currently in development.

Novel compounds can be tested in SmartCube® system and the results can then be compared 

to the signatures of reference compounds in PsychoGenics' database. Multiple analyses of 

the data are performed to quantitatively produce independent predictions of drug class, and 

drug subclass. The system, therefore, can, in an unbiased way classify compounds according 

to the therapeutic potential by comparing their complex behavioral profiles with those from 

a proprietary reference database.

The results for the class and subclass analyses are presented as standardized bar charts with 

percentages that sum to 100 for each dose. The results of the classification at the drug level 

are presented as individual similarities. An example of the output of a typical classification 

is shown in Fig. 2A.

Fig. 2B shows a different use of the system, as a full profile appears when a large dose 

response is run, in this case for diazepam. The drug goes from inactive at 0.25 mg/kg to 

anxiolytic between 1.0 to 2.0 and sedative at higher doses. In this way, therefore, a 

therapeutic window and complete profile can be established for any drug. An interesting 

characteristic of the total pharmacological activity represented by the height of the colored 

bar is that it captures all beneficial, neutral, detrimental and unknown effects of the drug, so 
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it continues to grow as the dose increases, but the color profile changes indicating the 

changing nature of the pharmacological action.

Fig. 2C depicts one of the first projects that benefited from the SmartCube® system. 

Different psychostimulant drugs are shown and compared against Eltoprazine. Despite 

Eltoprazine being from a very different class (a partial 5HT1A/1B agonist) it showed 

similarity to drugs used in Attention Deficit Hyperactivity Disorder (ADHD). Using these 

results and other preclinical experiments that confirmed activity of this compound in 

attenuating hyperactivity and impulsivity in various animal models, PsychoGenics 

conducted a proof-of-concept study in adults with ADHD. The study showed both doses 

tested (5 mg bid and 10 mg, bid) significantly improved ADHD symptoms using the ADHD 

rating scale (The Foundation for Medical Practice Education, www.fmpe.org, 2008) as 

compared to placebo (p < 0.003 and 0.037, respectively).

2.1 Lead optimization

Drug development involves a time consuming lead optimization process that depends on 

laborious and time consuming structure activity relationship models. Using an in vivo 

readout allows fast assessment of alternative modifications to a pharmacophore (Houghten 

et al., 2008). Fig. 2D shows an example from one of PsychoGenics' internal drug 

development programs in which 1,400 compounds were selected from commercially 

available libraries. A lead was found based on its interesting signature in SmartCube® and 

confirmation of therapeutic effects in standard tests. As the lead compound had a short half-

life a number of analogs were synthesized and ran through SmartCube. The quick feedback 

allowed chemists to quickly proceed through the structure activity relationship modeling and 

focus on changes to the pharmacophore that preserved the desired phenotypic signatures 

(Brunner et al., 2012).

Whereas in this project, the mechanism of action was unknown for much of the development 

(a phenotypic approach), other similar projects use target-specific libraries of known 

mechanism of action, even combination of compounds of different mechanism of action in 

search of specific synergies.

2.2 Quantitative Assessment of a Disease Phenotype and its Progression

The more than 2000 behavioral features collected from SmartCube® can also be analyzed 

using machine learning algorithms to determine the feature set that best represent a disease 

model and differentiate it from control.

Feature analysis: de-correlation and ranking—Many of the features from 

SmartCube® are correlated (e.g. rearing counts and supported rearing counts). Therefore, 

PsychoGenics forms statistically independent combinations of the original features (further 

referred to as de-correlated features) that discriminate between the two groups more 

effectively. Each de-correlated feature extracts information from the whole cluster of the 

original features, so the new feature space has lower dimensionality.

Next, PsychoGenics applies a proprietary feature ranking algorithm to score each feature's 

discrimination power (ability to separate the two groups, e.g. control and disease). Ranking 
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is an important part of the analyses because it weighs each feature change by its relevance: if 

there is a significant change in some irrelevant feature measured for a particular phenotype, 

the low rank of this feature will automatically reduce the effect of such change in the 

analyses, so we don't have to resort to the conventional “feature selection” approach and 

discard information buried in the less informative features. The ranking algorithm can be 

applied to either the original or the new features to gain insight about the key control-disease 

differences.

Feature analysis: quantitative assessment of Disease Phenotype—In the new 

feature space, the overlap between the “clouds” (Gaussian distributions approximating the 

groups of mice in the ranked de-correlated features space) serves as a quantitative measure 

of separability (“distinguishability”) between the two groups (Fig. 3). For visualization 

purposes, we plot each cloud with its semi-axes equal to the one standard deviation along 

the corresponding dimensions.

A third group, “treated”, can be plotted in the same coordinate system that best discriminates 

Control and Disease, as shown in Fig. 3. The drug treatment effect can then be represented 

as a combination of two components: one along the direction of the “recovery line” (the line 

connecting the centers of the Control and Disease clouds) shown as a blue arrow, and the 

component orthogonal to (“pointing away” from) that direction shown as a yellow arrow. 

The relative length of the “recovery” (blue) arrow with respect to the Control-Disease 

distance can then be interpreted as the “recovery due to the drug”, whereas the relative 

length of the “other effect” (yellow) arrow represents feature changes that move the Treated 

group away from the Control group. The summary of this analysis can be effectively 

represented as a bar graph (right pane in Fig. 3) which we typically refer to as the recovery 

signature.

Fig. 4 shows an example of the ranked features that separate R6/2 mice, a model of 

Huntington's disease, from its wild type control and the binary discrimination in a 2D cloud. 

We ordered the features according to the rank obtained at each age, and could see very 

strong discrimination against the wild type control. However, the features that were different 

at 5 weeks of age where different than those affected at 8 and 12 weeks when pathology 

starts to be apparent. Indeed, whereas the signature shows an increasing hypoactive 

phenotype at the older ages, it comprised a hyperactive phenotype at the 5 week mark, 

possibly signifying a prodromal phase of the disease.

3. The NeuroCube® System

The NeuroCube® system is a fully automated in-vivo high-throughput platform that is used 

to assess motor performance and gait in mice and rats. The system utilizes computer vision 

and machine learning algorithms to automatically track every locomotion detail of an animal 

and measure parameters of gait geometry, gait dynamics as well as non-locomotion 

behaviors.

Subjects are allowed to freely walk for 5 minutes in the NeuroCube® system. Digital videos 

of the subjects are captured and processed through computer segmentation algorithms. The 
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resulting fitted parameters are then analyzed to extract clips of locomotor behavior. Those 

clips are further analyzed to extract information about gait geometry (stride length, step 

length and base width) and gait dynamics (stride duration, step duration and swing duration). 

In addition, the system provides data relating to the following:

• Average Speed of the animal

• Paw Image intensity, paw contact area, perimeter of contact zone, and paw 

diameter

• Paw Position relative to the center of the body is registered.

• Body Position as it pertains to movement of the subject

• Rhythmicity and limb coordination

The sensitivity of the NeuroCube® system to capture subtle gait changes allows it to 

objectively quantify disease progression in various rodent models of neurodegenerative and 

neurodevelopmental disorders as well as in preclinical models of pain and injury.

Classification algorithms are used to define and rank the most dominant features that define 

the disease phenotype. Complex bioinformatics are employed to calculate the discrimination 

probability between the control and disease animals which would help determine onset of 

the disease phenotype for pharmacological interventions.

Chronic neuropathic pain remains a widespread disorder within the health sciences. Lack of 

translation between preclinical and clinical research continues to be a challenging problem 

in this area as in other neuroscience domains (Brunner et al., 2011; Munafo et al., 2014; 

Taneja et al., 2012). Most of the preclinical models of neuropathic pain that use evoked 

thermal or mechanical single endpoints provide poor predictive validity as the majority of 

human clinical pain is considered spontaneous in nature. By using the NeuroCube® system, 

many behaviors of a freely moving animal are captured without the need of thermal or 

mechanical manipulations. Using sciatic or spinal nerve ligation models the system can 

define the behaviors that best define symptoms of neuropathic pain by ranking the features 

that show discrimination between a sham and a ligated animal for example. The algorithms 

can then be applied to assess the efficacy of therapeutic compounds to reverse these pain 

features. It is possible that using this automated, less subjective approach can provide a 

better translational tool for neuropathic pain research.

Fig. 5 shows the effects of acute administration of duloxetine on paw placement in the 

chronic constrictive nerve injury model of neuropathic pain (Bennett and Xie, 1988; 

Sommer et al. 1997). Whereas a sham-injured mouse walks on all four paws in a rhythmic 

and symmetric way, a nerve injured mouse shows clear avoidance to place the paw of the 

ligated side (left hind paw) on the platform (Fig. 5A & B). Furthermore compensation in gait 

is seen as the mouse adds more pressure on the front paws. Following administration of 

duloxetine, a partial recovery of gait is seen and the mouse is able to place the injured paw 

on the platform while locomoting. These effects are in line with the mechanical allodynia 

test showing that duloxetine increases paw withdrawal threshold in this model (Joshi et al., 

2006; Le Cudennec and Castagne, 2014).

Alexandrov et al. Page 6

Eur J Pharmacol. Author manuscript; available in PMC 2016 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5C shows quantitative analyses for the effects of duloxetine on recovering of pain 

features in both SmartCube® and NeuroCube® systems in the mouse chronic constrictive 

nerve injury model and in a standard mechanical allodynia model. The model mice and 

sham mice could be differentiated with 87% accuracy in SmartCube® and 96% accuracy in 

NeuroCube®. Duloxetine reduced such separation by 41% and 45% in SmartCube® and 

NeuroCube®, respectively.

4. The PhenoCube® System

The PhenoCube® System provides an environment where disease models or treatments can 

be assessed over several days. Groups of mice are challenged in ways that allow the system 

to detect social, circadian, motor, and cognitive behaviors, hallmarks of most 

neuropsychiatric disorders. The system acquires a broad range of different measures that 

span multiple disease-relevant domains (i.e., cognition, locomotor activity and circadian 

patterns), and thus can efficiently capture the complexity of the behavioral phenotype. 

Complex computer vision and automation eliminate any subjectivity and together with 

proprietary data mining algorithms can detect subtle changes even early in the progression 

of a disease phenotype. The cognitive challenges presented in the environment can be 

employed to identify compounds with potential to treat cognitive impairment associated 

with disorders such as schizophrenia, Alzheimer's disease, and ADHD.

PsychoGenics developed the PhenoCube® through hardware modifications of Intellicage 

units (New Behavior, AG, Zurich, CH) and addition of custom-built computer vision 

hardware and software. This system enables behavioral phenotyping of group-housed mice 

within a home-cage-like environment over multiple days with minimal experimenter 

interruption, thereby allowing comprehensive capture of the natural behavioral rhythms of 

the subjects. A day/night Camera mounted on top of the cage allows recording of the 

subjects and the use of PsychoGenics' proprietary computer vision software (Fig. 6). Red 

light is used during the night cycle to detect the mice while maintaining a low subjective 

light level.

In Phenocube® mice are tracked with both a micro transponder and through computer 

vision, which allows identification of individual mice in group settings. The standard test 

protocol comprises a conditional discrimination task, although other cognitive tasks can be 

program using the Intellicage software. Behavioral measures are obtained, every second for 

24 hours and for several days, from the Intellicage unit and from the computer vision 

software and include measures of exploration, perseverative behavior, cognition, 

locomotion, rearing, climbing, social contact and interaction, and other measures.

Models of Huntington's disease are particularly relevant for demonstration of the utility of 

this system as they are characterized by altered cognition, motor activity, and circadian 

rhythms, all domains that can all be assessed simultaneously by the PhenoCube® system. As 

an example, the R6/2 model shows blunted circadian amplitude in measures of activity as 

measured by locomotion, increased perseverative behavior as measured by repeat entries to 

a corner, and reduced rearing and climbing as age and pathology advance (Balci et al., 

2013). PhenoCube® can be used to track behaviors over 24 hours for multiple days at a time 
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and thus can effectively pick up circadian deficits (Oakeshott et al., 2011), cognitive and 

social phenotypes that may be present only during the dark phase of the light cycle.

PhenoCube® also adds the ability to score social behavior in an automated way. The system 

solves visual occlusions by tracking mice using both computer vision and telemetric data. 

We used two wild type strains, the C57 and BTBR strains from Jackson's labs as an 

example, as they have very different behavioral patterns. Phenocube's ability to capture 

social and activity behavior at the same time with high temporal precision allows detangling 

activity from true social behavior. Our results suggest, for example, that BTBR mice are not 

particularly less social than C57 mice, rather the latter are more active and aggressive (Fig. 

6; Kabitzke, Mazzella & Brunner, unpublished). Such analyses of social behavior may prove 

of great importance for the understanding of social deficits in animal models of autism and 

schizophrenia.

5. Future Directions

In addition to phenotyping and drug development projects, PsychoGenics is working on the 

extension of the systems in two different directions. The first one involves integration of 

proteomics and genomics data with the observed behavioral signatures. We are developing 

methods to comb though the integrated dataset to find which are the best descriptors for a 

particular pharmacological or genetic signature. For example, using a neurodegenerative 

model, one can study in a comprehesive way both behavior and gene expression in the same 

subjects and then find a gene expression change that best correlates with cognitive deficits. 

Such gene may belong to a pathway that has not been investigated before. We hope that by 

finding a best omic predictor of functional deficits, novel unsuspected targets can be found.

PsychoGenics also developed a way to predict pharmacological effects of novel, never been 

tested, compounds through the use of a comprehensive model that identifies relationships 

between chemical features (custom high-resolution chemical fingerprints) and high-content 

behavioral readouts: Relationship Preserving Sample Generator (RPSG). RPSG is able to 

not only quantify non-linear relationships among all elements of high-content biological 

readouts and digitized representations of chemical structures (custom fingerprints), but also 

to subsequently generate tractable de-novo virtual chemical structures with the identified 

chemistry-biology relationships. Digitized chemical representation of those virtual 

compounds with the corresponding highest scored desired biological response are then used 

in the following ways:

• to compare to existing public and private libraries where compounds have been 

“digitized” the same way, allowing PsychoGenics to select the most promising 

molecules for testing (similar to Tanimoto similarity scoring except that we assign 

greater weights to the more discriminating fingerprint features);

• convert generated fingerprints back to the actual (novel) chemical structures using 

PsychoGenics' proprietary In-Silico Synthesis engine based on reaction database 

mining. We found that 94% of the resulting novel structures produced by RPSG are 

tractable (synthesizable).
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Recent studies suggest that RPSG-produced hits have very high probability of showing in 

vivo activity (>90%). Thus, RPSG can be used to generate virtual libraries for screening 

(“hit generation” mode) when the supplied training set of molecules is chemically diverse 

(Fig. 7).

In addition, if the training set of molecules is an analog series of closely related chemical 

structures, RPSG can be used to optimize the biological ctivity and/orpotency, which makes 

it an ideal tool for lead optimization applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
SmartCube® combines behavioral neurobiology insight integrated with advances in robotics 

and computer vision (video capture and analysis) and the power of bioinformatics to process 

and analyze massive temporal and vectorial datasets using probability causal inference 

algorithms. SmartCube® is a platform that provides a sequence of challenges to a mouse, 

extracts more than 2000 features during a session and using proprietary bioinformatics 

detects the potential of compounds to treat psychiatric disorders in an unbiased way by 

comparing their complex behavioral profiles with those from a proprietary reference 

database.
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Figure 2. 
Drug signatures and lead optimization in SmartCube®. A: The signature of an mGlurR2/3 

antagonist in SmartCube® showing a strong antidepressant signal at the class level (the 

green bar height represents the strength of the antidepressant signal), and a transition from 

tricyclic to SSRI at the Subclass level. The legend show all classes some subclasses present 

in PGI proprietary database. B: Dose-response signature of diazepam in SmartCube® 

ranging from inactive, to anxiolytic and finally to sedative hypnotic as the dose increases. C: 
Eltoprazine exhibits a mixed signature (green-antidepressant and cyan- psychostimulant) 

that is similar to other stimulant and non-stimulant drugs currently used in the treatment of 

ADHD. D: A lead compound was found combing through available chemical libraries. A 

desired signature of anxiolytic (yellow) and psychostimulant signals (cyan) is then sought 

after by generation of new analogs. Some compounds show a very similar signature (1 and 

2) and others show activity but signatures that deviate from the lead. Compounds 15-17, for 

example show an antipsychotic signal (purple) and some others are completely inactive 

(18-19), despite being chemically similar to the lead.
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Figure 3. 
Visualization of a binary discrimination in the ranked de-correlated feature space. Left. The 

two highest ranked de-correlated features form the 2D coordinates plane for visualization 

purposes. Mice from the control group are shown as a blue “cloud” and mice from the 

disease group are plotted in red. From the overlap between the two clouds we can derive 

discrimination probability = 1 - overlap, which measures how reliably a classifier can be 

trained to discriminate between the two groups with zero corresponding to 100% overlap 

(and no ability to distinguish the two groups above the chance level) and 100% meaning 

error free discrimination. Right: The “recovery signature” graph summarizing the recovery 

analysis. The overlap (gray) and discrimination probability (red) sum up to 100%. Recovery 

(blue) ranges from zero up to the discrimination probability value. “Other behavioral 

effects” (yellow) represent drug effects in an orthogonal direction.
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Figure 4. 
Disease signature of the R6/2 mouse model in SmartCube at three different ages showing 

age-specific signatures. Features that were increased in the 5 week old mice are plotted 

towards the right of the scale (right of the zero value on the x-axis) including mainly 

measures of increased activity. In the older mice, features are decreased (towards the left of 

the zero value on the x-axis), showing the beginning of the hypoactive terminal phase.
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Figure 5. 
A. Paw image intensity in sham, chronic constrictive nerve injury (CCI) and duloxetine-

treated CCI mice. B. Pooled paw position of sham, CCI and duloxetine-treated CCI mouse. 

The CCI mouse shows avoidance to place the injured paw on the platform of the 

NeuroCube® system. Treatment with duloxetine restores this behavior. C. Cloud graph 

visualization of the sham, CCI and CCI + duloxetine groups relationships in NeuroCube 

(left) and the recovery signature graphs in both NeuroCube and SmartCube (right). The 

CCI-duloxetine cloud (green) is between the sham and CCI groups suggesting recovery. The 

quantification of this effect shows 41% recovery. Recovery as measured by SmartCube is 

similar, at 45%.
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Figure 6. 
PhenoCube® system. An inside view of the system showing visual cues and objects for 

assessment of motor behavior. The circular openings are the entry points and associated 

antennae corresponding to the Intellicage® system. Two wild type strains that show very 

different behavioral patterns in many tests were used to assess the ability of PhenoCube® to 

measure dyadic social behavior. BTBR mice showed reduced activity throughout days and 

nights (Mann Whitney, p < .002). A simple measure of casual encounters, crossing of 

locomotor trajectories, showed a very similar pattern (Mann Whitney, p < .002). True active 

social approaches (approach follow by an interaction), however, had a different pattern with 

only a slight non-significant trend toward lower approaches in the BTBR mice (Mann 

Whitney, p > .18). Other behaviors, likely of a more aggressive nature, following and 

chasing, showed again a higher frequency in the C57 mice than in the BTBR (Mann 

Whitney, p < .02). These results are consistent with the reputation of the C57 as an 

aggressive strain but somehow inconsistent with lower sociality in the BTBR mice.
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Figure 7. 
RPSG workflow in “Hit Generation” and “Lead Optimization” mode. The training set 

allows the RPSG algorithm to generate “Virtual compounds” which are ranked according to 

a desired biological response. Those compounds with the corresponding highest scored 

biological response are selected for testing and subsequent addition to the training set. The 

procedure is repeated until the most potent compound (which satisfies other selection 

criteria) is declared a “lead” or, later in the discovery process, an “optimized lead”.
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