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Abstract

Small cell lung cancer (SCLC) is a devastating disease due to
its propensity for early invasion and refractory relapse after
initial treatment response. Although these aggressive traits have
been associated with phenotypic heterogeneity, our understand-
ing of this association remains incomplete. To fill this knowl-
edge gap, we inferred a set of 33 transcription factors (TF)
associated with gene signatures of the known neuroendo-
crine/epithelial (NE) and non-neuroendocrine/mesenchymal-
like (ML) SCLC phenotypes. The topology of this SCLC TF
network was derived from prior knowledge and was simulated
using Boolean modeling. These simulations predicted that the
network settles into attractors, or TF expression patterns, that
correlate with NE or ML phenotypes, suggesting that TF network
dynamics underlie the emergence of heterogeneous SCLC phe-

notypes. However, several cell lines and patient tumor speci-
mens failed to correlate with either the NE or ML attractors. By
flow cytometry, single cells within these cell lines simultaneous-
ly expressed surface markers of both NE and ML differentiation,
confirming the existence of a "hybrid" phenotype. Upon expo-
sure to standard-of-care cytotoxic drugs or epigenetic modifiers,
NE and ML cell populations converged toward the hybrid state,
suggesting possible escape from treatment. Our findings indicate
that SCLC phenotypic heterogeneity can be specified dynami-
cally by attractor states of a master regulatory TF network. Thus,
SCLC heterogeneity may be best understood as states within an
epigenetic landscape. Understanding phenotypic transitions
within this landscape may provide insights to clinical applica-
tions. Cancer Res; 77(5); 1063–74. �2016 AACR.

Introduction
Small cell lung cancer (SCLC), accounting for �13% of lung

cancers (1), is exceptionally aggressive. Patients with extensive
disease die �1 year from diagnosis, and patients with limited
disease experience a dismal 20% cure rate (2–4). Standard of care
(2), confined to chemotherapy and radiotherapy for half a cen-
tury, is largely ineffective as SCLC patients exhibit high initial
response rates rapidly followed by treatment-refractory relapse.

Expression-based subtyping, impactful in other cancers (5),
may be effective in SCLC because of phenotypic variability (2, 6)
with respect toneuroendocrine features of its cell of origin (7, 8). A
recent study (9) identified two transcriptional SCLC subtypes
distinguishable by Notch pathway activity and aggressiveness,
but without mutational differences. In genetic mouse models of
SCLC, Calbo and colleagues showed that spontaneously occur-

ring neuroendocrine and non-neuroendocrine cell phenotypes
coexist and cooperate to promote metastasis (8).

These reports indicate that a deeper understanding of cellular
phenotypes could produce insights into biology and evolution of
SCLC. A limitation of previous studies (8, 9) is that analyses were
based on population averages, whereas variability in tumors
should be considered at the single-cell level (5, 10, 11). It also
remains unclear why this heterogeneity emerges.

To fill these knowledge gaps, we investigate SCLC phenotypic
heterogeneity at the single-cell level using an integrative compu-
tational and experimental approach. Consistent with previous
reports, we found two transcriptional subtypes at the population
level in cell lines and patient specimens, characterized by gene
coexpression modules enriched in neuroendocrine/epithelial
(NE) and mesenchymal-like (ML) features. To understand how
these phenotypes may arise in the absence of driving mutations
(9), we hypothesized that they are attractors of a regulatory
transcription factor (TF) network. This approach is grounded in
themathematical interpretation ofWaddington's epigenetic land-
scape (12, 13), whereby attractors correspond to biological dif-
ferentiation states or stable phenotypes. Based on this view, it has
previously been proposed that malignant phenotypes in cancer
correspond to attractors (14, 15), and some have suggested
"differentiation therapy" from malignant to benign attractors as
a possible treatment strategy (14–17).

To this end, we construct an SCLC master regulatory net-
work of TFs from NE and ML gene-expression signatures. We
then adopt a discrete Boolean modeling approach to simulate
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the behavior of this TF network and evaluate its ability to dynam-
ically control NE and ML phenotypes. Discrete models are well
suited to provide insight into complex TF networks by identifying
steady state TF patterns of expression, termed attractors. Mathe-
matically, attractors represent the stable configurations of the
dynamic TF network. Biologically, attractors correspond to tran-
scriptional steady states of an epigenetic landscape formed by
active (ON) and silent (OFF) TFs regulating each other. While
discrete models are coarse approximations, they are nevertheless
informative and circumvent the obstacle of unfeasible parameter
acquisition (18, 19).

Simulations of our SCLC TF network predict attractors corre-
sponding to the NE and ML SCLC subtypes. Furthermore, by
distilling theNE andML states to their core driving TFs, themodel
highlighted a shortcoming of the two-subtype classification, as
several cell lines and patient samples did notmatch any attractors.
Western blots revealed that these samples expressed similar levels
of both NE and ML markers. Flow cytometry revealed that this
"double-positive" phenotype reflected the character of individual
single cells, confirming the existence of a previously unreported
"hybrid" single-cell phenotype in SCLC. Exposure to cytotoxic
and epigenetic drugs caused NE andML cells to transition toward
the hybrid state, implicating it as a refuge for survival of treated
SCLC tumors.

Materials and Methods
Data normalization

The Cancer Cell Line Encyclopedia (CCLE) dataset (20) was
downloaded from the Broad Institute as CEL files. Data were
normalized and median centered using quantile RMA normali-
zation using Affy Bioconductor package (21) in R. Probe-level
data for all the datasets were converted to gene-level data by probe
merging using collapseRows (22). Probes with no known gene
symbols were removed.

Consensus clustering
Consensus clustering was performed using ConsensusCluster-

Plus v1.24.0package inRv3.2.3 (23)onboth the53SCLCcell line
dataset from CCLE (20) and 28 SCLC patients from the Clinical
Lung Cancer Genome Project (CLCGP; ref. 24), with 80% sub-
sampling of both genes and samples, 1,000 repetitions, 1 -
Pearson correlation, and k-means. Both the CCLE and CLCGP
datasets were subsetted to only include genes measured in the
GSE6044 (25) dataset, in order to maximize overlap with our
previous work (26).

Weighted gene coexpression network analysis
Coexpressionnetwork analysiswas performed inRv3.2.3 using

the weighted gene coexpression network analysis (WGCNA)
package v1.49 (27). As with the consensus clustering analysis,
the CCLE SCLC dataset was subsetted to only include genes
measured in GSE6044 (25). We used 1 - Pearson correlation to
build a coexpression based dissimilarity matrix. Modules were
generated using unsupervised average-linked hierarchical cluster-
ing with a static height of 0.95. We required that each module
contain at least 100 genes.

Comparative Pathway enrichment analysis of the Blue and
Turquoisemoduleswas performed using BINGOand Enrichment
map (28) and visualized in Cytoscape. Pathway enrichment for a
cell line was computed by transforming expression values to

Z-scores and computing the average expression of all genes
within a given pathway.

Transcriptional regulatory network construction
To generate an SCLC-specific transcriptional network, we

applied thebootstrap versionofARACNE (29) ongene expression
profiles from the 53 CCLE SCLC cell lines using the following
parameters: P ¼ 10�7, dpi ¼ 0 and 100 bootstraps, resulting in
27,224 interactions among 8,706 nodes. To evaluate if genes in
Blue and Turquoisemodule are enriched for targets of any specific
TF, we used Fisher exact test (30) to compute TF enrichment with
the Blue and Turquoise module genes. We selected all TFs to be
candidate master regulators if the Fisher exact test P value was
�0.05, leaving 96 and 207 TFs for Blue and Turquoise modules,
respectively. Of these, 23 TFs were common to both modules
(Supplementary Fig. S7D).

Modeling gene regulatory networks that were inferred entirely
from the available data can suffer from circular reasoning: a
dataset generates a network, which then predicts the dataset. To
avoid this fallacy, we built the network topology strictly using
sources external to the datasets of interest. Thus, we first filtered
ARACNETF predictions based on gold-standard TF-target binding
site databases CHEA, ENCODE, TRANSFAC, JASPAR using
EnrichR (31–35), and literature databases such as Pubmed and
Glad4U (36). These filtration steps produced a list of 76 likely TF
regulators of NE and/or ML differentiation. We took only hetero-
geneously expressed TFs (median absolute deviation above the
50th percentile) yielding a list of 38 TFs that we used to build a
Boolean network for SCLC. Next, we extracted directed interac-
tions between these TFs using only information from the above
gold-standard references and literature. Where possible, interac-
tions were classified as activating or inhibiting by manually
searching the literature. Interactions that we could not find in
the literature were classified as activating if the TFs are positively
correlated across the CCLE dataset, or inhibitory given negative
correlation (Supplementary Fig. S7B). Five TFs did not have
outgoing edges and were eliminated, leaving 33 TFs.

Boolean network simulation and analysis
TheTFnetworkwas simulated as a Booleannetworkwhere each

node was either ON (active) or OFF (silent). Nodes were updated
using the random order asynchronous method (18). We consid-
ered two distinct approaches updating TFs: (i) threshold updat-
ing, in which the total number of ON inputs are compared such
that the target node is switched ON when there are more activa-
tors, and OFF when there are more inhibitors, and (ii) inhibitory
dominant, in which having any inhibitor ON is sufficient to turn
the target node OFF. The threshold update rule is referred to as a
Hopfield neural network in some literature. Because the network's
state space is so large, we only simulated a random subsample of
the states. For both update rules, a state transition network was
seeded with 8,000 randomly generated initial states, in which
each TF had a 50% chance of being ON or OFF. When TFs are
updated in asynchronous random order, it is possible that the
state at time t may have several possible outgoing trajectories to
time tþ1. To account for this, each state that we observed was
initialized and updated 30 times to sample distinct trajectories to
the next state that may be influenced by the update order. Each
newly observed state was queued to be updated in this fashion,
until therewere nonew states identified. Attractorswere identified
by applying the attracting components algorithm fromNetworkX
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(https://networkx.github.io/) to the state transition graph for
each update rule. Using threshold updates, we found 57 fixed-
point attractors, andnooscillating ones.Weobserved the same set
of attractors using synchronous updates with 217 and 218 initial
states. Using the inhibitory dominant update rule, we found 6
fixed-point attractors, and 5 two-state oscillating attractors, find-
ing the same set of attractors using synchronous updates from 212

to 218 initial states.
To score the correlation between samples and attractors, CCLE

andCLCGP expression data were independently scaled between 0
and 1, and Pearson r was calculated pairwise between attractors
and cell lines/patients. Statistical significance was determined by
considering the highest correlationbetween each attractor and cell
line, and comparing against a null distribution, obtained by
generating 10,000 random TF vectors. The Mann–Whitney U test
was used to compare the score distributions. Themodel attractors
had higher correlation with cell lines than the random attractors
(threshold: P¼ 9.5e�34, inhibitory-dominant: P¼ 7.6e�9), and
higher correlation with patients than with the random attractors
(threshold: P ¼ 1.7e�23, inhibitory-dominant: P ¼ 1.7e�6).
Individual attractors were assigned a P value for their highest
correlation with each sample by direct comparison with the null
distribution (Supplementary Table S5).

Robustness of NE and ML attractor states
Cells need to be able to robustly guide their differentiation

choices depending on driving signals, and therefore we would
expect trajectories toward cell attractors to be robust. Structural
coherence (37) is a topological metric that measures how reliably
an initial condition evolves toward its appropriate attractor given
a perturbation. Thismetric requires an estimate of the total size of
thebasin of attraction, sowewere only able to apply it to attractors
for which we could reliably estimate this size (a few basins were
too small to reliably estimate their size). Values of random,
maximum, observed, and structural coherence are reported in
Supplementary Table S4. We also calculated Derrida curves (Sup-
plementary Fig. S9; ref. 38), as the average growth or decay of an
initial perturbation after one step, for perturbation sizes ranging
from 1 to 32 TFs.

Antibodies and reagents
Antibodies used for Western blotting include EphA2, LEF1,

c-MYC, NFkB1, ZEB1, MITF, CD56 and CD44 (Cellsignal),
OVOL2, SOX2, ASCL1, GAPDH, and b-actin (Sigma), FOXA2
and SMAD3 (BD Biosciences). Fluorophore-conjugated primary
antibodies were used for flow cytometry—CD56 BV605, CD151
PE, CD24 BUV395 (BD Biosciences), CD44 Pacific blue, CADM1
A647 (MBL), EPHA2 A488 (R&D Systems), CD133 PE-Cy7
(Biolegend).

Cell culture
Authenticated cell lines were obtained from ATCC from 2012

to 2015, authenticated by DNA STR profiling, morphology, and
mycoplasma detection. Cell lines were grown in company recom-
mendedmedia. New cell lines were obtained as needed every 1 to
2 years. Cell lines were expanded in culture for less than 2months,
then frozen in aliquots for subsequent use. Cell lines are passaged
no more than 30 times before being discarded (approximately 4
months). Any contaminated cell lines were discarded, and new

aliquots were thawed and cultured. Mycoplasma test was per-
formed on all cell lines in culture every 2 weeks.

Flow cytometry data generation and analysis
One to two million cells were plated in T75 or T150 flasks the

previous day and collected for flow experiment the next day as
described below. For drug treatment experiments, cells were
plated same as above the previous day, followed by drug addition
the next day. Cells were incubated with drugs for 3 days at 37
degrees then collected for flow experiments.

Cells were dissociated using TryplE (GIBCO) for 10 to 15
minutes followed by staining with Alexa 700 dye (Molecular
Probes) for 5 minutes at 37 degrees. Cells were then washed and
fixed with 2% paraformaldehyde (10 minutes at room temper-
ature), followed by surface marker staining or permeabilization
with ice-cold 100% methanol at �20 for 30 minutes. Cells were
then stained with fluorescent conjugated antibodies for 30 min-
utes in dark at room temperature. Samples were washed with PBS
and run on BD 5-laser instrument at the Vanderbilt Flow cyto-
metry core. Fluorescent channels were compensated using anti-
mouse IgK beads (BD Biosciences) that were tagged with fluores-
cent antibodies. First intact cells were gated on the Forward Scatter
Area (FSC-A) and Side-Scatter Area (SSC-A) plot, where debris has
a low FSC-SSC ratio. This was followed by gating for Alexa700-
negative viable cells as described previously (Box 1 in ref. 39),
where A700-positive populations are dead/dying cells. Finally,
A700-negative viable cells were further gated to include only
singlet populations. At least 20,000 to 30,000 viable singlet cells
were collected per sample. All subsequent gates on fluorescent
markers are made on viable singlet cells. The raw cytometer
intensity readouts for fluorescent channels were first converted
to log scale by using the asinh() function with a cofactor of 150.
Gating was conducted in Cytobank (40).

Western blotting
Cell lines were plated for 2 days in complete medium to

equilibrate. Lysates were prepared by spinning cells at 4�C,
aspirating the media, and adding M-PER lysis buffer (Pierce)
containing 1X phosphatase inhibitors 2 and 3 and protease
inhibitor (Sigma-Aldrich). Lysates were incubated for five min-
utes at room temperature, vortexed for 30 seconds and centrifuged
at 15,000 rpm for 15minutes (at 4�C). The protein concentration
was quantified using BCA assay (Pierce). Lysates were boiled for
10minutes at 100 degrees with 1XNuPage sample buffer (Molec-
ular Probes) and run on 8% or 4% to 12% Tris-glycine gels
(Molecular Probes). Semi-dry transfer was followed by blocking
with 1X Casein-TBS. Blots were imaged by chemiluminescence.

Results
Characterization of SCLC NE and ML phenotypes

We applied consensus clustering (23) to the 53 SCLC cell
lines in the CCLE database (20), and to 28 tumor samples from
the CLCGP (24), with the expectation to detect previously
observed neuroendocrine and nonneuroendocrine phenotypes
(8, 9). Consensus clustering analysis, which provides a ratio-
nale for determining the number of robustly separated sub-
types, indicated that the CCLE cell lines and the CLCGP patient
specimens are most consistently separated into two distinct
clusters (termed clusters 1 and 2; Fig. 1 and Supplementary Fig.
S1, Supplementary Table S1).

Hybrid Phenotype in SCLC
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Figure 1.

Identification of two phenotypes in SCLC cell lines and
patients. Consensus clustering was used to identify
robust clusters of CCLE cell lines (A and C) and
CLCGP tumor specimens (B andD). The consensus score
is the frequency that a given pair of samples was placed
in the same cluster over 1,000 iterations. The cumulative
distribution of SCLC cell line (A) and patient (B)
consensus scores is shown for values of k from 2 to 10.
These results most strongly support two transcriptional
subtypes in SCLC cell lines and patients, though in cell
lines, four subtypes may also be a good fit.
Corresponding consensus score heatmaps
for SCLC cell lines (C) and patients (D) are shown for
k ¼ 2 to k ¼ 4. Each point represents a pair of samples,
colored by consensus score from white
(0, never co-cluster) to blue (1, always co-cluster).
k ¼ 5 to k ¼ 8 are shown in Supplementary Fig. S1.
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To characterize these clusters, we applied WGCNA (27) to
the 53 CCLE cell lines. WGCNA identified 13 gene coexpression
modules (Supplementary Fig. S2A and Supplementary Table
S2). To summarize the overall expression of each module,
eigengenes (first principal component of all genes within a
module) were computed (Fig. 2). The Blue module eigengene
was upregulated (Bonferroni adjusted P < 0.001) within cluster
2, while the Turquoise module eigengene was upregulated
(Bonferroni adjusted P < 0.001) within cluster 1 (Fig. 2 and
Supplementary Fig. S2B). No other module eigengenes showed
statistically significant differences between the consensus clus-
ters (Supplementary Fig. S2B).

WGCNA modules are derived agnostically and reveal coex-
pressed genes participating in similar biology. Blue and Turquoise
module genes therefore provide information about the overall
character of the consensus clusters. Visual inspection reveals that
hubs (highly connected genes) in the Blue and Turquoise mod-
ules are well-knownNE ormesenchymal biomarkers, respectively
(Supplementary Figs. S3 and S4). Statistical analyses by Gene
Ontology and Enrichment Map (28) confirm enrichment of the
Blue module for neuroendocrine and epithelial differentiation
processes, while the Turquoise module is enriched for pathways
involved in mesenchymal phenotype and epithelial-to-mesen-
chymal transition (EMT; Supplementary Figs. S5 and S6A). Addi-
tionally, we performed gene-set enrichment analysis (GSEA; ref.
41) with published signatures of proneural, mesenchymal, and
proliferative glioblastoma subtypes (30) on the 12 cell lines with
highest Blue module eigengene expression, and 9 cell lines with
highest Turquoise module eigengene expression. The proneural
(Supplementary Fig. S6B, bottom) and mesenchymal (Supple-
mentary Fig. S6B, top) signatures were enriched in the cell lines
with high Bluemodule and Turquoisemodule expression, respec-
tively. As a control, the proliferative signature was significantly
enriched in neither (P > 0.1, data not shown).

Thus, the Blue module genes are a signature of the canonical
neuroendocrine state of SCLC, while the Turquoisemodule genes
are a signature of nonneuroendocrine/mesenchymal cells. We
therefore refer to cluster 2 (in which Blue module genes are high)
as the SCLC NE subtype, and to the cluster 1 (in which Turquoise
module genes are high) as the SCLC ML subtype (Fig. 1B and C).

Boolean simulations of TF network predict attractors
corresponding to NE and ML states

Because NE and ML subtypes are not associated with driver
mutations (9), we hypothesized they may be regulated epigenet-
ically, as during normal cell differentiation. Cell identity in dif-
ferentiation is largely controlled by regulatory networks of TFs
that coordinate expression of each other and of target genes
(42, 43). To understand specification of NE or ML cell identity,
we derived a network of TFs that regulate expression of genes
within the Blue and Turquoise modules (see Materials and Meth-
ods; Supplementary Fig. S7). By pruning nodes that had no
outgoing edges, we reduced this network to a core set of 33 TFs
and 361 interactions (Fig. 3A and Supplementary Table S3). We
used random asynchronous order Boolean simulation with both
threshold and inhibitory dominant update rules to identify
attractors. Using the threshold update rule, we found 57 stable
fixed-point attractors (Fig. 3B) and no oscillating attractors. With
the inhibitory dominant rule, we found only 6 fixed-point attrac-
tors, but 5 two-state oscillating attractors as well. Both the thresh-
old and inhibitory dominant attractors revealed similar features

in all subsequent analyses, suggesting that these results are
robust to the precise nature of the regulatory interactions (Sup-
plementary Fig. S8). We also inferred network robustness
to perturbations using structural coherence (Supplementary
Table S4; ref. 37) and Derrida curves (Supplementary Fig. S9;
ref. 38). These results indicate that the basins of attraction are
more robust than those of a random network, and that the
network dynamics are ordered, rather than chaotic. Together,
these observations suggest that the internal structure of interac-
tions imposed to the TF network (Fig. 3A) is non-random and
naturally leads to well-regulated stationary states, and that our
coarse modeling approach is acceptable for this system.

Each attractor is a 33-dimensional vector of TFs, differing by
the overall TF ON–OFF expression pattern (columns in Fig. 3B).
Many of the attractors differ only by one or a few TFs. Hierarchical
clustering segregated the threshold attractors into four distinct
clusters (Fig. 3B). Results from the inhibitory dominant network
are qualitatively similar and are shown in Supplementary Fig. S8.
Based on the TF ON–OFF patterning in each attractor within
the clusters, attractors 49 to 25 (along the dendrogram, Fig. 3B)
have active TFs known to be either neuroendocrine (INSM1,
POU3F2, SOX2, SOX11) or epithelial (FOXA2, OVOL2). In
contrast, attractors 35 to 34 (along the dendrogram, Fig. 3B)
contain active TFs (MYC, NFKB1, SMAD3) involved in mesen-
chymal differentiation or EMT.

We computed a correlation score between attractors and both
cell lines and patients by scaling the CCLE (Fig. 3C) and CLCGP
(not shown) expression data from 0 to 1 and calculating Pearson
correlation coefficient pairwise between each attractor and sam-
ple. Several attractors exhibited high correlation with cell lines
within the NE consensus cluster, while others exhibited high
correlation with cell lines within the ML consensus cluster (Fig.
3D). Similar results were observed with patients (Fig. 3E), and in
both cases the model's attractors were found to be significantly
more correlated to the samples than random (Supplementary Fig.
S10 and Supplementary Table S5).

These results confirm that the simulated dynamics of the 33 TF
network agree well with the NE and ML nature of the cell lines,
suggesting that the gene expression signatures of these phenotypes
is driven by these underlying NE and ML TF attractors. Neverthe-
less, a few attractors showed no significant correlation with any
cell line or tumor. These attractors were not further pursued, as we
do not observe them biologically. More significantly, however,
several cell lines and patient samples did not have significant
correlationwith any attractor. These samplesmay representmixed
populations of NE and ML cells, leading to poor correlation with
either subtype at the population level, or alternatively may rep-
resent populations of "hybrid" cell types.

Experimental validation of network attractors reveals a hybrid
single-cell SCLC phenotype

We probed the expression of cell lines for 10 of the 33 TFs. In
general, NE TFs were expressed at a higher level inNE thanML cell
lines, and vice versa (Fig. 4A). Consistent with the finding that
some cell lines didnot correlatewith either theNEorMLattractors
(Fig. 3D and Supplementary Fig. S8B), we observed cell lines that
simultaneously expressed both NE and ML TFs. Similarly, CD56
(NEmarker) andCD44 (MLmarker) were found coexpressed in 3
out of 10 patient samples (pt1112-1, pt216-1, and pt460-1, Fig.
4B). The other tumor samples had mutually exclusive expression
of either CD56 or CD44.

Hybrid Phenotype in SCLC
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Figure 2.

Two anticorrelated gene coexpression networks distinguish phenotypic clusters. A and B, Top, heatmap view of the Blue (A) and Turquoise (B) module
genes (rows) across 53 SCLC cell lines (columns). Cell lines are ordered and marked as in Fig. 1C consensus clustering. Bottom, the gene expression profile for
each cell line is summarized by the eigengene. The Blue and Turquoise modules had significantly different eigengene expression between the two consensus
clusters. C, The Blue and Turquoise module eigengenes plotted for each cell line reveals anticorrelated expression of Blue vs. Turquoise module (Pearson
correlation: �0.86, P: 1.6e�16).
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Figure 3.

TF network predicts NE and ML attractors. A, The 33 TF SCLC regulatory network. Green edges indicate activation, while red indicate inhibition. B, Boolean
simulations identified 57 stable attractors (columns). TF expression patterns for all attractors is displayed in rows: shaded cells represent TFs that are ON;
white represents OFF. C, TF expression in the CCLE dataset reveals similar expression patterns to in silico attractors. D, Correlation score between attractors
(columns) and cell lines (rows). Positive correlation, red; no correlation, yellow; negative correlation, white. Attractors 49–25 show high correlation with the
NE cell lines, while attractors 35–34 show high correlation with the ML cell lines. Nevertheless, several cell lines are uncorrelated with NE or ML attractors,
possibly revealing a hybrid phenotype. E, Pearson correlation scores were computed as in D between the 57 attractors (columns) and 28 SCLC patient
tumor specimens from the CLCGP (rows).
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These double-positive cell lines may be either composed of
mixed populations of NE and ML cells, or hybrid single cells
simultaneously coexpressing features of both phenotypes. We
investigated this using single-cell flow cytometry with well-
established NE and mesenchymal differentiation biomarkers
(Fig. 5 legend). To aid visualization, we defined overall NE and
ML scores as the unweighted sum of NE and ML biomarkers,
respectively.

In biaxial plots of these scores, NE cell lines consist primarily of
NEþML� single cells, while ML cell line single cells were NE�MLþ

(Fig. 5A and C). However, in several cell lines, single cells
simultaneously expressed similar levels of both NE and ML
biomarkers (Fig. 5B). These results confirm the existence of a
novel SCLC NEþMLþ hybrid phenotype comprised of both NE
and ML characteristics.

Other reports of hybrid phenotypes in cancer have associated
the hybrid cells with a more stem-like phenotype (44, 45). We
measured single-cell expression of CD133, a cancer stem-cell
marker, and found no significant difference between the NE, ML,
and hybrid cell lines (Supplementary Fig. S11).

Modulation of SCLC phenotypes with chemotherapy or
epigenetic drugs

Next, SCLC cell lines were treated with etoposide and cisplatin,
and with epigenetic modulators valproic acid (HDAC inhibitor)
and 5-azacytidine (DNA methylation inhibitor). Flow cytometry
measurement of NE and MLmarkers (see Fig. 5 legend) was used
to characterize how treatment shifted the phenotypic identity of
SCLC cells. Biaxial plots of NE vs. ML scores showed phenotypic
shifts at the single-cell level for all perturbations (Fig. 6), con-
verging toward hybrid populations. The hybrid phenotype was
thus an end state for SCLC cells subjected to stress.

Discussion
In this work, we identified signatures of phenotypic heteroge-

neity in SCLC, and a set of TFs regulating expressionof these genes.
Through discrete Boolean model simulations, we showed that a
master SCLC TF network naturally settles into states that were
identified as NE or ML. This suggests that the NE and ML cell
identities can naturally emerge from regulatory dynamics of TF
networks, rather than being driven by genomic mutations. Most
significantly, by distilling the NE and ML phenotypes to their
essential TF drivers, the model also exposed some cell lines that
had been improperly classified as NE or ML through transcrip-
tome-based clustering. In vitro validation confirmed existence of
SCLC cell lines and patient samples that simultaneously express
both NE and ML markers and TFs. We verified this hybrid
phenotype at the single-cell level in cell lines and showed that
cell lines transition toward this hybrid state for survival upon drug
treatment.

As resolving cancer heterogeneity can have profound impact
on patient care and outcomes (46), a deeper understanding of
SCLC heterogeneity, i.e., NE, ML, hybrid and beyond, may
translate to benefits in the clinic. Historically, attempts to
separate SCLC into subtypes in the clinic were abandoned due
to poor reproducibility among pathologists and unclear clinical
relevance (47). However, our findings indicate that SCLC
heterogeneity is dynamic, because a core TF network specifies
both the NE and ML phenotypes, which may confound static
associations. The hybrid phenotype may be an additional

Figure 4.

Experimental validation of TF network states in human SCLC. A, Five NE TFs
(FOXA2, OVOL2, SOX2, ASCL1, and LEF1) and 5 ML TFs (SMAD3, MYC, NFKB1,
ZEB1, MITF) validated by Western blot. The NE TFs show higher expression in
the NE cell lines (dark blue, as in consensus clustering) than in the ML cell
lines (light blue) and vice versa. Nevertheless, several cell lines showed
similar levels of expression of both NE and ML TFs, including NCI-H146, NCI-
H209, NCI-H1184, DMS53, NCI-H1048, and NCI-H446. Many of these cell lines,
such as DMS53, also showed poor correlation with any attractor in Fig. 3 and
Supplementary Fig. S8, and were near the center in Fig. 2C, suggesting a non-
NE and non-ML phenotype. These cell lines are tentatively denoted as
"hybrid" phenotypes. B, CD56 (a NE marker) and CD44 (a ML marker) were
probed by Western blots in 10 SCLC patient samples. Most patients show
expression of only one or the other; however, Pt112-1, Pt216-1, and Pt460-1
show double positive expression of both markers, suggesting the hybrid
phenotype may be important in patients as well.
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confounder, exacerbated by the tendency of both NE and ML
cells to move toward the hybrid phenotype under treatment.
We argue that SCLC heterogeneity is best interpreted as states
within a phenotypic landscape, and understanding phenotypic
mobility within this landscape could provide ties to clinical
relevance.

While SCLC has a high mutation rate, no correlations between
mutations and distinct subtypes have been observed (9). In this
work, we show a non-mutational mechanism for regulation of
distinct SCLC cell identities, as attractors of a TF regulatory
network. This framework of equating cell types to attractors was
first advanced by Waddington in his eponymous epigenetic

Figure 5.

Single-cell level expression of phenotypic biomarkers in SCLC cell lines reveals hybrid cells. Flow cytometry was performed using four NE surface markers (CD56,
CD24, CADM1, and ALCAM) and two ML surface markers (EPHA2 and CD151). Axes represent unweighted sums of normalized NE and ML fluorescence. A,
CORL51, NCI-H146, and NCI-H2141 were classified as NE by consensus clustering, and single cells show NEþML� phenotype. B, DMS53, NCI-H446, and
NCI-H1048 showed comparable levels of expression of NE and ML TFs (Fig. 4), Blue- and Turquoise-module eigengenes (Fig. 2), and poor correlation with either
NE or ML attractors (Fig. 3 and Supplementary Fig. S8). At the single-cell level, these cells also show similar levels of expression of NE and ML markers,
suggesting these cells are in a hybridNEþMLþorNE�ML�phenotype, notwell describedby aNEvs.MLdichotomy. The hybrid state is characterizedby cells along the
diagonal of these plots. C, SW1271, NCI-H841, and DMS114 were consistently classified as ML, and single cells exhibit NE�MLþ phenotype.
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landscape (12), and has because been expounded upon by many
mathematical biologists (13). It has further been argued that
malignant cancer states and cancer heterogeneity are best
described by the concept of attractors (14–16). Significantly, this
framework has been shown to provide possible therapeutic strat-
egies by identifying targets in silico, which most significantly
perturb the attractor states (17).We do not exclude the possibility
that mutations can drive SCLC heterogeneous phenotypes, but
our results indicate that epigenetic causes should also be
considered.

The Boolean modeling approach used here is an established
way of obtaining a coarse-grained picture of large network behav-
ior, and iswell suited to identifying the stable states of TFnetworks
(18, 19). Our approach was novel in constructing the TF network
in a blind fashion from SCLC gene expression datasets, TF
databases and literature, and was validated by its ability to
reproduce correlationswith knownphenotypes. Significantly, our
model revealed the existence of a previously unrecognized hybrid
phenotype, by showing that some cells do not correlate to either
the NE or ML attractors. However, we did not identify attractors
correlated with the hybrid phenotype. Hybrid EMT phenotypes
have been previously reported in NSCLC (48) and lung adeno-
carcinoma (49), and other groups have recently reported compu-
tational modeling of hybrid EMT phenotypes by driving EMT
networkswith external stimuli (44, 50). Additionally, the Boolean
modeling approach cannot capture intermediate levels of expres-
sion, and therefore attractors corresponding to the hybrid state

may not be identifiable using this method. Continuummodeling
approaches may be needed to better understand the hybrid state.
Identification of gene coexpression modules enriched in the
hybrid phenotype may also reveal additional relevant TFs. Con-
sidering all of these possibilities, current ongoing work in our
laboratory is directed at identifying hybrid attractors.

Our study establishes the hybridphenotype as a refuge for drug-
treated SCLC cell lines. We anticipate that this phenotype may
play a significant role in the evolution of SCLC tumors under
treatment, and possibly in relapse. SCLCTF networksmay serve as
a guide for interventions aimed at preventing phenotypic transi-
tions into resistant states. While we focused on SCLC here, such
transcriptional regulation may play a similar role in maintaining
non-mutational heterogeneity in other cancer types, and our
approach should be generally useful in uncovering underlying
mechanisms.
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Revealed in Small Cell Lung Cancer by a
Transcription Factor Network Model That
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Akshata R. Udyavar, David J.Wooten, Megan Hoeksema,
Mukesh Bansal, Andrea Califano, Lourdes Estrada,
Santiago Schnell, Jonathan M. Irish, Pierre P. Massion,
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In the original version of this article (1), Fig. 1 was incorrectly replaced with Fig. 2.
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